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Prerequisites

 Basic linear algebra

 Knowledge of least squares

 Basic calculus
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Goals

Understand:

 Effect of correlated observations.

 Importance of incorporating in VLBI analysis.

 How to incorporate in VieVS
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Review of Least Squares

1. Assume you have observations which are 

modeled as follows:
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Design Matrix 

or 

“Partials” 

Parameters

When considering FA  

summation is assumed. 



Review of Least Squares

2. Furthermore, assume that the noise is 

uncorrelated between observations and you 

know the expected size of the noise:
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jkjkj  2

Expectation value 



Review of Least Squares

The least squares solution are the values of the 

parameters A which minimizes:
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Weighting by 1/(error squared)—observations 

with large error shouldn’t effect the solution much.



Review of Least Squares
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The minimum is found by differentiating with 

respect to A:

Or in matrix notation:



Review of Least  Squares
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Hat indicates the solution to the least square equations—

NOT the real value of the parameters.

Normal Equations:

This has the formal solution: 

Normal Matrix B-Vector



Review of Least  Squares
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 No summation this time.

The uncertainty in the estimated parameter Aj is:

This assumes normally distributed  noise. 



Review of Least  Squares

John Gipson  NVI, Inc./NASA GSFC     

Correlated Noise 

0

5

10

15

20

25

0 2 4 6 8 10 12

D
is

ta
n

c
e

Time

Best Fit for a Line

D=5+1.3T

Data

Linear (Data)

Least Squares Values are:

Offset = 5.126 ± 0.054

Rate   = 1.286 ± 0.024



Detour: Expected Value of  
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2

NumParNumObs2

One can show with modest assumptions that:  

Usually deal with “reduced Chi-squared”: 

NumParNumObs
red




2
2 



This has the advantage that the expectation 

value is 1.  



Detour: Expected Value of  

John Gipson  NVI, Inc./NASA GSFC     

Correlated Noise 

2

12 red

If this differs significantly from 1, then one of our 

assumptions is  wrong. 



Detour: Expected Value of  
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2

…. and we only made two: 

12 red

If this differs significantly from 1, then one of our 

assumptions is  wrong. 

 FAO jkjkj  2



Correlated Observations  
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Suppose that the first assumption is correct:

But our observations are correlated (and we 

know the correlation):

 FAO

jkkj Cov

What changes?



Correlated Observations  
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Can always diagonalize the covariance matrix:
21 'SCovS

Here S is a square orthogonal matrix: TSS 1 of dimension NumObs. 



Correlated Observations  
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Can always diagonalize the covariance matrix:

Apply this transformation to assumption 1:

21 'SCovS

 SSFASOFAO 



Correlated Observations  
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Can always diagonalize the covariance matrix:

Apply this transformation to assumption 1:

21 'SCovS

 SSFFSOO  '''Defining:

 SSFASOFAO 



Correlated Observations  
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Can always diagonalize the covariance matrix:

Apply this transformation to assumption 1:

21 'SCovS

 SSFFSOO  '''Defining:

 SSFASOFAO 

'''  AFO…we have:

jkjkj  2''' and by construction:



Correlated Observations  
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Can always diagonalize the covariance matrix:

Apply this transformation to assumption 1:

21 'SCovS

 SSFFSOO  '''Defining:

 SSFASOFAO 

'''  AFO…we have:

jkjkj  2''' and by construction:

Look 

familiar?



Correlated Observations  
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By changing basis we have diagonalized the 

covariance matrix. Everything we learned before 

goes through in terms of the new variables O’.

We start with--

   AFOFAO TTT ''
'

1
''

2

2 




The main problem is finding the transformation 

S. It may be easier to work in the original basis.

And differentiate with respect to A to obtain the 

normal equations. 



Correlated Observations  
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Start with:

Let’s go back to the original basis: 

   FAOSSFAO TTT  
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Moving S 

downstairs

   FAO
Cov

FAO TTT 
12

Definition of  

Cov



Correlated Observations  
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Chi-square in the original basis is:

O
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FAF
Cov

F TT 11










   FAO
Cov

FAO TTT 
12

Differentiating with respect to A and setting 

the result to 0 we obtain the normal equations:



Problems in Paradise

Hints of problems in VLBI Session Analysis
red for a single session is usually >2 or larger.

 This implies that we are not correctly modeling things on a 

session-by-session basis. 

 The standard fix is to reweight the error  to get red
2 =1

 This increases the formal errors of estimates. 
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Problems in Paradise

Several Ways Reweighting Observations

1. Multiplicative reweighting.  Doesn’t change value 

of estimates.

2. Additive reweighting.  Will change estimates. 

1. Add same constant for all observations. 

2. Add constants that depend on stations in 

observation.

3. Add constants that depend on baseline. This is 

Goddard default.
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Problems in Paradise

Several Ways Reweighting Observations

1. Multiplicative reweighting.  Doesn’t change value 

of estimates.

2. Additive reweighting.  Will change estimates. 

1. Add same constant for all observations. 

2. Add constants that depend on stations in 

observation.

3. Add constants that depend on baseline. This is 

Goddard default.

Reweighting tries to sweep problems 

under the rug. 
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More Problems in Paradise

Even after reweighting…

 Baseline scatter plots show too much variation 

based on formal errors of estimates. red >2 
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Detour: Baseline Plots
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This plots the baseline scatter  as a function of baseline  length. 

These are sometimes used to see if an alternative model is better.
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Detour: Difference Plots
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In comparing two options,  it is usually better to plot the difference in scatter.

For example, the above illustrates that VMF is better than NMF during CONT05.
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Length:       45/54 better    9/54 worse.  Avg imp= 0.44mm



More Problems in Paradise

Even after reweighting…

 Baseline scatter plots show too much variation 

based on formal errors of estimates.

 EOP estimates  from simultaneous independent 

VLBI networks differ more than they should.

 Differences between VLBI and GPS derived Polar 

Motion are too large based on formal errors.
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Review Our Assumptions
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If we know the physics



Review Our Assumptions
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If we know the physics

… we must be wrong in our 

assumptions about the noise.



Station Dependent Noise

Several sources of station dependent noise:

1. Atmosphere modeling error.

2. Cable cal error.

3. Phase cal error.

4. Clock modeling error.

5. Loading corrections,  hydrology, etc. 
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Many slowly varying noise terms will be soaked up in the 

clocks, or  result in a shift of station position.  

This will not effect Chi-square.  



Evidence from Simulations

John Gipson  NVI, Inc./NASA GSFC     

Correlated Noise 

Chart courtesy of J. Boehm. Data courtesy of T. Nillson,D. MacMillan, J. Boehm

Solution departs from input data for extended periods.  

+’s indicate simulated 

atmosphere mapped to 

zenith based on realistic 

turbulence model from 

T. Nillson

Lines indicate recovered 

zenith delay from 

different analysis 

techniques.



Evidence from GPS
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Residual scatter as a function of elevation determined by GPS.

Functional form of curve is based on turbulence model.



Station Dependent Noise
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Station Dependent Noise
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Effect of Adding Clock Error
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Adding clock-like 

noise results in:

1. Modest 

improvement 

compared to 

standard  

solution.

2. More realistic 

Chi-square.



Effect of Adding Atm Error
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Adding atm-like 

noise results in:

1. Substantial 

improvement 

compared to 

standard  

solution.

2. Much more  

realistic Chi-

square.

Effect of Mapping Noise is similar too, but better than, Az Noise.



Atm Baseline Difference Plot
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The improvement in adding station dependent noise is 0.48 mm.

Slightly better than the improvement form using VMF which was 0.44 mm.
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Reprise of VMF Effect
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A repeat of the VMF chart for quick comparison.
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We Forgot Something…
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Station dependent noise introduces correlation  

between observations. 
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Not only does this 

term change…

Station dependent noise introduces correlation  

between observations. 



We Forgot Something…
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jkkj Cov

Not only does this 

term change…

Station dependent noise introduces correlation  

between observations. 

..but so does this…



Correlation Between Observations
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Measurement noise

The VLBI observable is the differential delay:



Correlation Between Observations
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Measurement noise Station dependent noise.

The VLBI observable is the differential delay:

Total noise



Correlation Between Observations
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The VLBI observable is the differential delay:

Assuming this form, what is the covariance?



Correlation Between Observations
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The VLBI observable is the differential delay:

Assuming this form, what is the covariance?



Correlation Between Observations
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Simplifying Assumptions

Observations at different 

times are uncorrelated.

Station noise is uncorrelated 

with measurement noise. 

Station noise at different 

stations is uncorrelated. 



Correlation Between Observations
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Based on our assumptions we only need consider 

observations at a common time with one or two  

stations in common. 



Correlation Between Observations
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Based on our assumptions we only need consider 

observations at a common time with one or two  

stations in common. 
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Diagonal term. 

This is what we just did. 



Correlation Between Observations
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Based on our assumptions we only need consider 

observations at a common time with one or more  

stations in common. 

222
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Diagonal term. 

This is what we just did. 

The first or second  station on 

two observations is the same. 
2,, ilijiilij  



Correlation Between Observations
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Based on our assumptions we only need consider 

observations at a common time with one or more  

stations in common. 

222
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Diagonal term. 

This is what we just did. 

The first or second  station on 

two observations is the same. 
2,, ilijiilij  

2,, iiljiliij  
The first station in one 

observation is the second 

station in the other observation. 



Correlation Between Observations
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Based on our assumptions we only need consider 

observations at a common time with one or more  

stations in common. 

222
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Diagonal term. 

This is what we just did. 

The first or second  station on 

two observations is the same. 
2,, ilijiilij  

2,, iiljiliij  
The first station in one 

observation is the second 

station in the other observation. 

All other elements are 0. 



Evidence of Correlation in VLBI
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BR FD HN KP LA NL OV PI SC WS ME ON TS # AVG SIG Avg/Sig

1 BR-VLBA - -5 31 -20 -18 1 12 -21 8 36 -19 -11 -8 12 -6.1 2.4 -2.6

2 FD-VLBA 5 - 31 31 14 22 15 7 16 2 4 -39 -3 12 14.1 2.1 6.8

3 HN-VLBA -31 -31 - -6 -29 -6 -5 -22 -12 2 -12 -63 -31 12 -17.2 3.0 -5.7

4 KP-VLBA 20 -31 6 - 10 1 -45 -3 20 -11 - - 46 10 -1.2 3.6 -0.3

5 LA-VLBA 18 -14 29 -10 - 2 -14 -3 -11 -22 -24 12 -24 12 -2.8 2.1 -1.5

6 NL-VLBA -1 -22 6 -1 -2 - -11 -14 20 -8 -17 -39 -17 12 -7.8 1.9 -4.1

7 OV-VLBA -12 -15 5 45 14 11 - 14 -24 0 8 16 -36 12 -1.34 2.3 -0.6

8 PIETOWN 21 -7 22 3 3 14 -14 - 20 11 -21 16 -3 12 6.2 1.8 3.6

9 SC-VLBA -8 -16 12 -20 11 -20 24 -20 - 6 4 64 23 12 -3.1 2.9 -1.1

10 WESTFRD -36 -2 -2 11 22 8 0 -11 -6 - 34 - 32 11 0.24 4.3 0.1

11 MEDICINA 19 -4 12 - 24 17 -8 21 -4 -34 - 55 -28 11 2.8 4.3 0.7

12 ONSALA60 11 39 63 - -12 39 -16 -16 -64 - -55 - -62 10 -13.6 12.0 -1.1

13 TSUKUB32 8 3 31 -46 24 17 36 3 -23 -32 28 62 - 12 13.9 3.4 4.0

RDV48

Delay Residuals for Source 1418+546 @ 2004-12-01-18:06:59



Correlation Between Observations
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By assumption, there is no correlation between 

different observations on different  scans.

The covariance matrix 

is block diagonal.
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By assumption, there is no correlation between 

different observations on different  scans.

The covariance matrix 

is block diagonal.

This makes it 

easier to invert:
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The normal  equations are: 

Because of block diagonal structure, this becomes:

Instead of building up the normal equations 

observation-by-observation, we build them 

up scan- by- scan. 



Effect of Adding Corr. Map Error

John Gipson  NVI, Inc./NASA GSFC     

Correlated Noise 

Including correlated 

atm-like noise 

results in:

1. Substantial 

improvement 

compared to 

standard  

solution.

2. Much more  

realistic Chi-

square.

3. Added benefit:

No reweighting!

Including correlation improves the results. 
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On average the scatter is reduced  by 0.78 mm;  45/54 baselines are improved.
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Using VMF mapping function results in further improvement. 

Reduction of 1 mm versus 0.78 mm with NMF.
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Using  ray-traced delays as a priori results in an even larger improvement.

Reduction of 1.43 mm versus 1.0 mm with VMF and 0.78 with NMF. 
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The improvement using correlated noise is very clear in the baseline plot.
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Previously we  derived….
222

,, jimeasijijij  

2,, ilijiilij  

2,, iiljiliij  
All other elements are 0. 

Using these you can show that


j

T

jjVVCov 2

Covariance in absence of noise. 

There  is one V-vector for each station, and 

the sum is over stations. The dimension of V 

is the number of  observations in the scan.

The elements of  V are labeled by the stations in the 

observation. They are non-zero if and only if  the 

observation contains station j: 

 
kljkj

j

klV  
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 
kljkj

j

klV  

Example:  4 station scan which has 6  scans.  

Then there are 4 V vectors and they take the form: 

)000(

)000(

)000(

)000(

342423141312

4444

3333

2222

1111

















V

V

V

V

From  previous page.



An Aside: Cov is positive definite.
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Previously we  showed…


j

T

jjVVCov 2

Claim this is positive definite. 00  CovXXCov T

  
j

T

j

T

j

T

jj

TTT XVXXXVVXXXCovXX
222 Proof:

This means it is invertible.
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It is straightforward to calculate Cov, and Cov^-1. 

But it is slow…. 

Matrix inversion goes like N^3, where N is the 

dimension of the matrix.   

  2/1 StatStatBL NNNN

Hence calculating Cov^-1 goes like 8/6

StatN

Fortunately can speed it up using a trick. 
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CovConsider 

This is just a symbolic notation. 
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




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
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








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

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
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
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jj

j

T

jj
VV

I
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CovConsider 

We can expand the term in […] in a power series: 

  























k k l

T

ll

T

kk

j

T

jj
T

kk

j

T

jj

j

T

jj

j

T

jj

VVVVVVVVVVVV
I

VV
I

...
1





Strictly speaking,  need to worry about convergence of  the series, etc.

But I am a physicist, not a mathematician.  When I am done I will make sure 

everything works. 
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We can expand the term in […] in a power series: 
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

Contract these 

vectors to obtain
jk

k

T

j
W

VV



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11

These terms can be gathered together to give:
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 
 

jk

T

k
jk

j V
WI

V
Cov

2

1

22

1 1



Putting it all together

Note that I+W has dimension Nstat. 

Naive time:  Clever time:  8/6

StatN 3

StatN

3

StatNSpeeded up by a factor of:   

jk
k

T

j
W

VV



Where W is a matrix with elements
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 
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1 1
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In calculating the normal 

equations…
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You encounter terms like:   F
V

WI
V

F
T

k

jk

jk

jT

2

1

2 





Resist the temptation to expand the sum first!  It is 

much better to do the calculation like this…

  





















 

jk

T

k
jk

T
T

j FV
WI

FV
2

1

2 

V has many 0’s elements, 

which makes the VF

multiplication fast.



Review & Conclusions

John Gipson  NVI, Inc./NASA GSFC     

Correlated Noise 

1. Correlation modifies  the normal equations:

O
Cov

FAF
Cov

F TT 11









   FAO

Cov
FAO TTT 

12

2. Evidence of problems  with VLBI Analysis. 
• Chi-square >1 for individual sessions.

• Baseline scatter larger than it should be.

• Disagreement between independent  

measurements  too large. 

3. Baseline scatter plots as a tool. 
• VMF better than NMF because it reduces scatter 

by 0.45mm on average. 
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4. Evidence for Station Dependent Noise and 

some sources of it. 

5.  Adding Station Dependent Noise helps. 
• Clock-like helps a little.

• Mapping function helps a lot. 

• Baseline scatter for CONT05 reduced by 

0.48mm on average.

• Some baselines reduced as much 2.2mm. 

6. Evidence for correlation between observations.
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7.  Simplifying assumptions: 
• Station and Scan Dependent.

8.  Incorporating correlation in analysis helps (a lot!) 
• RMS  scatter reduced by 0.78mm. Some baselines 3.6mm

• With VMF RMS reduced by 1.0mm avg. Max 4.0mm

• With raytrace RMS reduced by 1.43mm.  Max 6.8mm

9. Some steps to speed  construction of normal 

equations. 
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