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Abstract

This note describes the relation between pre- and post-fit sigmas.

1 Introduction

In least squares problems you start with a set of observations which you assume are described by
a set of n parameters which you want to derive. One way of looking at this is that you have an
n-parameter set of functions, and you want to find the function that matches the data best. Each
observation has assigned to it an uncertainty o;, where the subscript j labels the observation. This
uncertainty is the expected difference between the ideal observation in the absence of noise and the
observation made in the real world. It is the scatter of an ensemble of identical observations. If
your model is correct, this is also the expected difference between the true model, perhaps known
only to God, and the observations. Once you estimate the parameters you have another model,
hopefully close to the true model. The differences between the observations and the derived model
are the post-fit residuals A;. Naively you would think that the expected size of the post-fit residuals
is the same as the uncertainty, explicitly:

<A3> =0; This is not correct!

Here (...).denotes mathematical expectation value. It turns out that this is not the case, and in
fact one can show that:

2
<A j> <0y
In words, the post-fit residuals will generally be smaller than the uncertainty of the measurement.
Since the size of the post-fit residual of an individual point is often used to discard outliers, it is

important that we able to calculate what the expected size is. 1 will refer to expectation value of
the post-fit residual as the post-fit sigma, and I will denote it by 7;:

(a)-5

A concrete example may clarify the proceeding paragraph. Suppose that you expect that your
data will lie along a straight line. This line is specified by two parameters, the offset and the slope.
The expected deviation of an individual point from the “true” line is given by it’s uncertainty, o;
You can do a least squares fit to obtain a straight line through the points. This line will in general



be different from, although close to, the “true” line. Since this line is derived from the data, it
seems plausible that residuals of individual data points will be smaller for it then for the true line.
In fact, if you have just two points, the residuals will be 0.

In the section 2 we review the least squares technique. In section 3 we derive the formula for
the post fit sigmas. In section 4 we apply these formulas to the familiar case of fitting data to a
straight line.

All of this discussion ignores the effects of constraints, which is covered in another memo on

“Constraints, Covariance and y2”.

2 Lightning Review of Least Squares

In least squares problems you have a set of parameters A, which you want to estimate from a set of
observations O;. You start by assuming that in the absence of noise, each observation O; is given
in terms of a known function Fj;(A) :

The next step is to linearize this problem around some value for the A’s. This is done by expanding
the F'(A) around a default for the A’s.

9F;(Ao)
0A,

= Fj(Ao) + ij,a(AO)‘SAa

0; =2 Fj(Ao)+ §Aq (1)

where OF;(Ao)

(Ap) = Z2A0) 2
FralAo) = S50 ©
The first term on the right hand side (RHS) of equation (1) is the calculated observation at the a
priori values for the parameters. If the F}; are linear functions of the parameters, then this equality
will be exact. (Even if they are not, the linear approximation is generally good if the a priori value
for the A’s is close to the true value, and the £’s are smooth functions. If these conditions are not
met, then it may be necessary to iterate the least squares process.) Before proceeding, it is useful
to introduce some new notation. Let

Oc,i = Oj — Fj(4o)
Then we can rewrite equation (1) in matrix notation as follows:
Oc¢ = f(Ap)dA

In what follows we will usually suppress the dependence on Ayg.
Our goal is to find the values for 6 A, which make this equation hold. One way of doing this is
to form the sum of the residuals:
=) A? (3)
J



where

Aj = [OC - féAa]j

By assumption, for noiseless data and with the correct choice of 64, the residuals vanish. The
general approach is to vary the 64, to minimize y2.At this point we could proceed to derive the
least squares equations for noiseless data, but will forgo doing so since we are interested in the case
with noise.

In the real world data has noise, and even for the true values of 64, we have:

Oc,; = [f6A]; +¢; (4)

This equation will be true if we are correctly modeling the observations. If we are not, then this
needs to be modified by an additional term. For example, if we are trying to modify data as
straightline, but the data is really parabolic, then this equation is incorrect.

For any individual observation we may be able to adjust the parameters so that the left hand
side is 0, but in general we won’t be able to choose the parameters so that this is true for all
observations simultaneously. Instead we attempt to minimize the residuals in some average sense
which will be made clear momentarily. Let o; be the uncertainty in the j-th measurement:

2 _ 2
o= ()

Then it is customary to replace equation (3 ) by the weighted sum:

N

A2

=g
J

The weighting factor insures that poor data is downweighted with respect to good data. Roughly
speaking, if o is twice as large as 0}, then we expect A; to be twice as large Ay We derive the our
estimate of A4, by minimizing y? with respect to them. This is done by setting the derivatives of
x? equal to 0:

~

2

Iy? _
D6A,

Evaluating this is straightforward, and we obtain the ordinary least squares equations:

0

1 ~ 1
Z Z fj,b(AO)fj,a<A0)—2 6A, = Z ﬁfj,bOc,j
J J J

2 o

J

Here the “hat” on 6A indicates that it is an estimate, and not the true value, which is unknowable.
This equation can be rewritten in matrix notation as:

T 6A = T 0 (5)

Where
W = diag(o3,03,0%,....)

This is the covariance matrix of the observations

Wi = (gjek) (6)



and I have assumed that the observations are uncorrelated, i.e., W is diagonal. If the observations
are correlated then W will not be diagonal. Equation (5) will remain the correct least squares
equation, where W is given by equation (6). The solution for the 64, is given by:

~ -1
SA = [fTW*1 f} W04
This of course assumes that [ w1 f} is invertible.

3 Derivation of Post Fit Residuals and Expected x?

At this point we have derived a best fit model from the data. It is natural to ask what is the
expected size of the residuals for this particular solution That is, given the 6 A found by the above

<A§> =57

for a given observation? As mentioned previously, naively one might expect that

procedure, what is:

However, a simple counter-example shows that this can not be the case. If we have two points and
are estimating a straight-line, then the post-fit residuals are 0, that is, 0; = 0 even though the
uncertainty of each observation is not. The reason our intuition is incorrect is that our estimates
depend on the observations, and indeed are constructed from the observation.

As a first step in deriving 3? we rewrite the residuals entirely in terms of the observations:

A Oc — f6A
= Oc—f[f"w ] w0,

= (r-sfrwis] et o

Equation (4 ) gives O¢ in terms of the true parameters and the noise. Substituting this in we
obtain:

A= (r=s[mwo] W) (s
It is trivial to show that
(I —rlrrwe] fTW1> F=0

and hence the f&6A term vanishes. We are left with:
-1
A= <I _f [fTW*lf} fTW1> e
Hence it follows that

@) =X (1= [fmwty] e

D,q 2P

(2p2q) <I— ¥ {fTqurl fTW1>

k.q



However, (gpe,) is just the covariance of the observations, which was given in equation (6) above.
This equation becomes:

(A;A) = KI _f {fTWﬂfrl fTW1> W <I— wlf [fTwlf]lfT> (7)

ak

= (Wl

5k
For general j, k this equation gives the covariance of the residuals with each other. If we specialize
to j = k this equation gives the expected size of a residual for a given observation:

@ﬁzﬁ=ﬁ—ﬁhﬁvv}VT
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Now the term [|,; is positive, which implies that the post-fit sigmas are always smaller than the
prefit sigmas.

Before closing this section, it is interesting to derive one more relationship. Namely, what is
the expected size of x2? By definition:

A2

(o

|k)[\D

N

=
j

LY

Which can be rewritten as:
v = ATw 1A
= Trace(W 1AAT)
Hence
<X2> = Trace(W ! <AAT>)

-1
= Trace(W '(W — f [fTWﬂf} I
= Trace[num_obs — Tracelpum_params

= num_obs —num__params

In going from the first to the second line I have used equation (7). In going to the third line I have
used the cyclic properties of traces. In the third line Ium obs @and Inum params are unit vectors
labeled by their dimension, and num_obs and num_parmﬁs are the number of observations and
parameters. This leads to the familiar result that the expected value for <X2> is the number of
observations minus the number of parameters you are estimating.

4 Application to Straight Line

In this section we apply the results of the last section to a simple example: the estimation of a
straight line by least squares. By assumption

Oj = Ay + tjAl



Suppose that we have n equally spaced observations starting at 1, all with the same uncertainty o.
Then the matrix f takes the form:

and

.

n
n > n?

Jj=

It9=1
i

J

o2

Wt = L(azll j;

n(n+1)
n(n+1) n(n+1)2(2n+1) )
6

The inverse of the normal matrix is:

11 ) 12 (n+1)é2n+1) _(n42»1)
wit] o n(n? —1) \ @i 1

It is straightforward to show that:

5 ) ~ 12 . (n+1)é2n+1) _(n;»l) 1
7; = ¢ ll n(n? —1) ( Ly ) _(n;rl) 1 j
12 n+l \? n’-1
|- (%)
l n(n? — 1) { 2 1)+ 12

Note that for n = 2, this vanishes at the end points. This is symmetric around reflection about the
middle, namely under the substitution:

j—n+1—7
For n = 3 we have

1
=2 _ =2 _ 2%
0] = 03 06

2

~2 24

05 = 03

All of the residuals are smaller than o2 but the effect is more pronounced at the end points. . You

can show that in general

9 .9 gn—1n-—2
o = n

n n+1
=R on —1
O'n/2 = O N

Since =2 < 1 the post fit residuals of the endpoints are always smaller than the middle points.
This is the basis of the folklore that for the least squares fit for a straight-line, the end points matter



more than the middle As n gets large the term Z—jﬁ approaches 1, and the discrepancy between

middle and end points diminishes. The figure below plots 3? /o? as a function of j for n = 10.
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